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1. Introduction

Since the accidental discovery of penicillin by Alexander Fleming in 1928 and the first widespread use

of antibiotics in the 1940s, they remain today among the most important and essential class of drugs

worldwide. However resistance to antibiotics was also identified as early as the 1940s, and indeed

the negative externality was recognized in Fleming’s 1945 Nobel prize speech (of course there is also

a positive externality that it may cure an infection and thereby reduce the likelihood of transmission

to uninfected persons).1 For 150 million annual prescriptions written in the early 1980s in the US,

one estimate places the unaccounted costs due to resistance to be between $.35-$35 billion, while

significantly high costs and welfare losses have also been estimated for EU/UK, and 23K-25K annual

deaths due to resistance in the US and EU each (Phelps, 1989, Elbasha, 2003, Smith et al., 2005,

European Parliament, 2006, ECDC/EMEA, 2009, CDC, 2013). Today antimicrobial resistance

(AMR) has become a global threat with an estimated 700K deaths worldwide annually, and has

prompted calls for a global response (WHO, 2001, CMO, 2013, O’Neill, 2016). Based on these

concerns, the British government commissioned a review of AMR, which was tasked with identifying

causes of rising drug resistance and to propose policy actions that can be taken internationally. The

final report of the commission warns that if the problem goes unchecked, as many as 10 million lives

a year, and as much as $100 trillion output worldwide would be at risk by 2050 (O’Neill, 2016).

Two key issues identified in this report, and relevant to this paper, are lack of incentives for firms to

undertake research and development (R&D) of new antibiotics, and demand management towards

appropriate/optimal use.

Indeed, there is a downward trend in the number of new antibiotics reaching the market with

only twelve new drugs and two new classes introduced since 2000 (lipopeptides and oxazolidinones)

where the last new antibiotic class introduced before that (trimethoprim) was in the seventies

(ECDC/EMEA, 2009, Power, 2006, Spellberg et al., 2004). Moreover, since new antibiotics are

reported to be not as profitable as, say cancer drugs, several R&D active pharmaceutical firms have

diverted their efforts and closed down their antibiotic research laboratories, and those that remain

have few projects in advanced clinical trials (Boucher et al., 2013, Mossialos et al., 2010, IDSA,

2004, Projan, 2003).2 As stated in O’Neill’s report, returns from new investments in antibiotics do

not have high or guaranteed returns: if a new patented antibiotic comes to the market, its price

is high while the existing generics of older strains may have lower price but also low AMR at the

time, and hence sales of the newer and more expensive antibiotic would be low. By the time AMR

for the older generic rises to the level that patients would be switched to the newer antibiotic,

1“... Mr. X. has a sore throat. He buys some penicillin and gives himself, not enough to kill the streptococci but enough

to educate them to resist penicillin. He then infects his wife. Mrs. X gets pneumonia and is treated with penicillin. As the

streptococci are now resistant to penicillin the treatment fails. Mrs. X dies” Fleming, Nobel Lecture, December 11, 1945.
2According to one recent editorial, only Merck, Roche, GlaxoSmithKline and Pfizer have active antibiotic programs (Nature

Biotechnology, 2018).
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patent life may be near its end, and hence the innovative newer drug may still not be profitable as

generic production starts. Similarly, over and inappropriate use of antibiotics in human and farm

use (mentioned in the report and elsewhere, see for instance, Hollis and Ahmed (2013), Brown and

Layton (1996)) has been linked to the rise of AMR strains of pathogens.3

Antibiotics can be classified as narrow- or broad-spectrum, where narrow-spectrum drugs work

against a select group of bacteria and will not kill other microorganisms in the body and thus help

in slowing AMR. However, they can only be prescribed when the causative organism is known. On

the other hand, broad-spectrum antibiotics are prescribed more generally and when the causative

organism is unknown, but they also exacerbate the AMR problem (Steinman et al., 2003a,b, Wood

et al., 2007, Kaier and Moog, 2012, CMO, 2013). If there is a cost to finding which narrow-spectrum

antibiotic is appropriate, generally broad-spectrum antibiotics will be over prescribed relative to the

narrow-spectrum antibiotics and contribute to AMR. The report recommends demand management

via testing prior to prescribing, and where appropriate, using narrow-spectrum drugs. Interestingly,

the O’Neill (2016) report also recommends taxes on pharmaceutical firms (labeled as ‘pay or play’

basis), but where firms who invest in R&D that is useful for AMR can deduct their investment

from the imposed tax. To the extent that narrow-spectrum antibiotics are better in terms of

AMR prevention, this subsidy would be a cost side intervention that could potentially help with

demand management if it lowers the relative price of these drugs and shifts demand for more

narrow-spectrum antibiotics.

In this paper we use sales data from 2003-2013 from the UK to document the market structure

for antibiotics by drug type and firms (branded, generic, R&D active firm or not, molecule class,

broad/narrow spectrum). Our objective is two fold. First, we want to quantify the performance of

firms by estimating price-cost margins and check if they vary by age of the molecule and drug, as

well as estimate the same by the spectrum of the drugs. In order to do so, we estimate demand

using discrete choice models (nested logit and random coefficients with optimal instruments, em-

ploying methods outlined in Berry et al. (1995), Nevo (2000) and Reynaert and Verboven (2014))

on aggregate sales data by individual drugs, and combine it with assumptions about forms of com-

petition and cost functions to back out marginal costs at the product level. We jointly estimate the

supply side under Nash-Bertrand equilibrium, where multi-product firms maximize their profits in

an oligopolistic setting. The estimation helps us check whether newer drugs are more profitable or

not, and how they compare to their generic counter parts. Second, based on estimated parameters,

we simulate and test the feasibility of cost side interventions to affect demand. Particularly, would

a tax on broad-spectrum (or a subsidy on narrow-spectrum) shift demand from broad to narrow-

spectrum antibiotics, as suggested in some of the policy documents mentioned earlier (e.g. CMO,

2013), and if so, how much would it cost society?

3Positive correlation between antibiotics consumption and resistance is well documented, see for instance Goossens et al.

(2005), Malhotra-Kumar et al. (2007), Goossens et al. (2007), Tacconelli et al. (2008).
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Our results show that even though sales by value have decreased over time, as has the average price,

profitability of several individual drugs has increased due to a more extensive decline in costs. For

instance, the average price-cost margin for the market is around 35.2%, up from 26.3% in 2004 to

46.2% in 2012 (this margin is cumulative over manufacturers, wholesalers and retailers). Although

price-cost margins for the antibiotics market in the UK are still high overall, there is noticeable

variation across different molecule groups and firms. Broad-spectrum antibiotics tend to have lower

costs and higher margins than narrow-spectrum agents, although the gap shrinks in later years.

New molecules launched after 2000 are unlikely to bring innovators large profit, as they have less

than 0.01% of market share in our data. Further, firms considered research active in antibiotics

earn less than 19% of revenue of all drugs in our sample which corresponds to less than 10% of

industry profit. This market performance might explain why innovative pipeline in new antibiotics

has dried up (Power, 2006, Cooper and Shlaes, 2011, Mossialos et al., 2010).

At the individual brand level, the drugs are fairly elastic. The share-weighted mean own-elasticity is

−3.310 and cross-elasticity is 0.172.4 There is generally less substitutability across spectrum classes

(narrow- to broad- or vice versa) compared to drugs within the same spectrum class: for a percent

increase in the price of a broad-spectrum drug, the mean percentage increase in the demand for

another broad-spectrum drug is 0.288, while that of narrow-spectrum drug is 0.148.

These estimates suggest that while it is possible to shift demand from broad- to narrow-spectrum

drugs, it comes at a cost. Simulations show that if the marginal costs of broad-spectrum were as

high as those of narrow-spectrum (say due to a unit tax), demand for broad-spectrum would fall by

28.1%, while that of narrow-spectrum would increase by 43.8% in 2012. The short run total cost of

such a tax would be £962 per thousand individuals, or £61.26 million due to change in consumer

welfare, testing costs, firm profits and tax revenue. We also provide estimates from an ad valorem

tax which imposes a 5-20% tax on a subset of broad-spectrum drugs at a much lower societal cost

with significant reductions in targeted drugs. Our estimates should not be taken as full calculation

4Two other papers also estimate demand for antibiotics and report elasticities, though those are for groups of drugs rather

than for individual brands (as reported here). In the context of how new drugs impact the calculations for a price index,

Ellison et al. (1997) use sales data from the US for the cephalosporins (a class of antibiotics) and estimate a AIDS demand

model. They report group wide elasticities by brand and generic groups, where each group itself consists of individual drugs

aggregated across different manufacturers and alternative forms of the drug, but all within the same molecule. The own-

elasticities range from -4.34 to +1.06. Alternatively, in the context of impact of TRIPS on welfare, Chaudhuri et al. (2006)

use data on quinolones (a class of antibiotics) from India and also estimate AIDS demand by product groups. Their focus is

on foreign versus domestic manufactures and so they also provide group wide elasticities by molecule and domestic and foreign

status of manufactures, where individual brands and forms are grouped to that level. Most of the own elasticities are lower

than -2 but range from -5.94 to -0.08. While these estimates are at group level, there are examples of estimates at brand level

as well, albeit not for antibiotics, which are more in line with our estimates. For instance, Duso et al. (2014) estimate nested

logit models at brand level for anti-diabetic drugs from Germany, and reports a range from -37.349 to -0.991 with a mean

value of -6.65, while Björnerstedt and Verboven (2016) estimates nested-logit and random coefficients models using brand level

data from Swedish analgesics market and report own-elasticities in the range of -15.45 to -5.16 for the nested logits and -6.5

to -1.99 from the random coefficients models.
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of welfare as we do not account for long term benefits that accrue to consumers due to reduction in

AMR (which would reduce long term loss in consumer surplus). They should be interpreted as an

upper bound on the total cost of such an intervention as we account for an increase in cost due to

additional testing. Compared to the societal cost of AMR in terms of death and direct costs cited

earlier, this may not be a large price to pay for a reduction in AMR.

There is a small but growing empirical literature in economics related to the use of the antibiotics.

In the context of Taiwan health care, Bennett et al. (2015) find that antibiotic prescriptions increase

with the level of competition among health providers, largely due to pressure from patients, but

that antibiotic prescriptions decreased when physician’s cost of prescribing drugs increased due to a

policy reform targeting antibiotic consumption. On the other hand, in a field experiment in China,

Currie et al. (2011, 2014) find that misuse of antibiotics is not driven by pressure from patients, but

rather financial incentives linked to prescribing drugs. Similarly, others have investigated the link

between appropriate antibiotic prescription and physician incentives. For instance, Elleg̊ard et al.

(2018) report that relative to broad-spectrum, the share of narrow-spectrum prescriptions increased

significantly among children diagnosed with respiratory tract infection after physicians were exposed

to pay-for-performance schemes tied to the use of narrow-spectrum antibiotics. Others have also

reported positive results relating pay-for-performance and more appropriate antibiotic prescriptions

(Mullen et al., 2010, Yip et al., 2014, Gong et al., 2016).

By comparison, there is a much more substantial but mostly theoretical literature that discusses

the role of taxes, subsidies, tradable permits, and that of markets and optimal patent designs

to address problems associated with AMR. Several studies highlight differences between optimal

levels of antibiotic use chosen by a social planner versus those that may emerge in different settings,

including (but not limited to) single versus multiple periods, farm versus human use, choice of drugs

within a hospital or community settings, global versus single country, and when antibiotics may be

renewable or a non-renewable resource (Tisdell, 1982, Brown and Layton, 1996, Laxminarayan and

Brown, 2001, Rudholm, 2002, Laxminarayan and Weitzman, 2002, Herrmann and Gaudet, 2009,

Herrmann and Nkuiya, 2017). In parallel, others have considered the role of various instruments

to account for the negative externality such as direct regulation, user charges, physician charges

and tradable permits when physicians are subject to defined drug budgets (as in the case of UK)

(Coast et al., 1998, Smith and Coast, 1998, Smith et al., 2006, Herrmann and Nkuiya, 2017).

For instance, Rudholm (2002) consider’s a Pigouvian tax to eliminate the departure of market

equilibrium from the global optimal resource allocation problem, while in a simulation based study

to control resistance to anti-malaria treatments, Laxminarayan et al. (2006) study the impact of

global subsidies for artemisinin-based combination therapy (ACT) over artemisinin monotherapy

(AMT), and find that even a partial subsidy can have a significant impact on delaying the emergence

of artemisinin resistance.
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A related but distinct literature also highlights the role of markets and optimal patent designs

to address problems associated with AMR. One suggestion has been to extend the patent length,

which would increase monopoly period benefits of antibiotic effectiveness, and hence increase a

firm’s incentives to minimize resistance (Laxminarayan, 2001, Horowitz and Moehring, 2004, Towse

and Kettler, 2005). Similarly, Mechoulan (2007) finds that compared to the price charged by generic

industry, re-activation of monopoly via extended patents by a myopic monopolist would set the price

closer to the socially optimal price if the increase in resistance is sufficiently high.5 Herrmann (2010)

adds that with a finite length of a patent, a forward looking monopolist would also set prices like a

myopic monopolist, and hence it is socially desirable to extend the duration of the patent. Others

have argued that because of cross-resistance, where use of one antibiotic within a class affects the

resistance of another drug in the same class, antibiotic patents should be broad, which would also

discourage ‘marginal innovations’ (Laxminarayan, 2001, 2002, Herrmann and Laxminarayan, 2010).

Relatedly, Herrmann et al. (2013) show that because of AMR, innovators do not innovate at the

appropriate distance from the existing molecules, so that additional regulation on patent breath

or financial subsidies on R&D are needed. Only when firms launch new antibiotics at the correct

position, can tax/subsidy regime correct consumption patterns.

Other policies include a sui generis right for expired patents within antibiotic class to a single

producer (perhaps via auctioning) to permit better control over AMR, giving antitrust exemptions

to allow consolidation, or issuing wildcard extensions to other patents if firm innovates for antibiotics

(Laxminarayan et al., 2007).6 However, Outterson et al. (2007) argue that neither extension of

patent life nor wildcard can be the solution, as the reward from the former is too little and the

cost (to the society) of the latter is too large. On the other hand, Eswaran et al. (2016) point out

that competition from the new entrant may have two contradictory effects on resistance. Due to

cross-resistance, it may increase the resistance of the originators drug, but that it can also prolong

the life of the originator’s drug if the resistance reduced by market stealing effect is larger. Similarly,

Gallini (2017) argues that patent can facilitate innovation if protection of follow-on research and

technology transfer is guaranteed.

The rest of the paper is structured as the follows. The next section describes the antibiotics UK

market and the data. Section 3 outlines the model as well as discusses estimation issues. Section

four has all main results including the regression coefficients, substitution patterns and simulations.

The last section concludes.

5In fact, in 2012, President Obama signed the Generating Antibiotics Incentives Now (GAIN) legislation which adds five

years to any original market exclusivity already conferred to certain antibiotics.
6More generally the idea of transferable or roaming exclusivity is in relation to all disease areas where R&D may not be as

profitable, such as the orphan drugs (Kettler, 2000, Towse, 2004, Grabowski, 2005) and works as follows: if Pfizer developed

a new antibiotic, it would be able to extend its patent on another blockbuster drug such as Lipitor by a set number of years,

and if a firm did not have a patent on another drug, it could sell the extension to some other firm.
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2. Background and Data

Antibiotics are prescription only medicines and about 74% are prescribed via general practitioners

(GPs), followed by 18% use in hospitals (PHE, 2015a). Once a physician writes a prescription,

patients can get it filled at a pharmacy and pay a fixed co-pay regardless of the cost of the drug

(certain groups are exempt). The National Health System (NHS) will reimburse pharmacies based

on a set tariff as long as the drug has been approved for reimbursement. Rules for setting the tariffs

are different for branded versus generic/unbranded drugs. For the latter, NHS reimbursement is

based on weighted average of wholesale prices supplied by main generic manufacturers or whole-

salers. For branded drugs, the UK does not directly control prices, but instead regulates profit

on sales of drugs dispensed to NHS covered patients under its Pharmaceutical Price Regulation

Scheme (PPRS). Generally, manufacturers can set the price of new drugs without pre-approval by

the Department of Health (DH), but any increases over years need to be justified and approved by

the DH (see ÖBIG, 2006).

Prior literature shows that GPs are aware of prices and that they may be sensitive to prices (NAO,

2007, Scoggins et al., 2006, Carthy et al., 2000). This is enforced by NHS’s budgeting strategy

since April 1999 to achieve cost saving and efficiency (Jacobzone, 2000). To ensure efficiency of

prescribing and control for pharmaceutical expenditure, the NHS sets an annual prescribing budget

for each Primary Care Trust (PCT) at the beginning of a financial year (they have now been

replaced by Clinical Commissioning Groups). PCTs in turn set individual prescribing budgets for

each contracted GP in their group who are then responsible for keeping their prescription payment

within the budget. PCTs track GPs’ spending and report it to the NHS Prescription Services.

Some PCTs also reward GPs who underspend their budget to achieve cost saving goals (Ashworth

et al., 2004). Thus drug prices may affects GP’s decision.

Our data comes from British Pharmaceutical Index (BPI) data series by IMS, which provides

monthly sales information for pharmacies in the UK between 2003 and 2013. It covers all antibiotic

prescriptions from general practices and outpatient hospital use. Residual consumption in hospital

inpatient use, dental practices, and other community settings is not included. A drug is defined as

a unique combination of manufacturer, molecule, product name and formulation, and we aggregate

over different pack sizes and strengths so drugs in different stengths/sizes are not counted as different

products. A limitation in our data is that generic manufactures are not separately identified in the

IMS data base. Thus, if multiple manufactures are producing a drug by non-proprietary name

within the same molecule and formulation, and within the same ATC class, then they are lumped

into one product. We also standardize quantity as daily defined dosage (DDD), which is an assumed

maintenance dose per day for a specific molecule-route-of-administration combination used for its

6



main indication among adults. Prices are computed as sales divided by quantity in DDD units

(revenues and prices are deflated using UK CPI and are reported in 2003 real terms).7

The total market for all antibiotics in our data is £160 million per year and in real terms has

decreased from £208.6 million in 2004 to £126.7 million in 2012. This drop is driven primarily by a

decrease in average real prices, which declined from £0.65 per gram to £0.31 per gram over the same

period. By contrast, sales by volume (quantity) have increased over time, both in absolute units as

well as per capita (see Figure 1). For instance, about 60 million packs of antibiotics containing 0.4

billion grams of active ingredients (or 0.44 billion DDD units) were dispensed in 2012, while 44.5

million packs were dispensed in 2004. This is only partially explained by the rise in UK population

which increased from 60 million to 64 million over this period. The average DDD unit of antibiotic

consumption per resident per year also increased from 5.36 to 6.93 between 2004 and 2012.

Figure 1. Antibiotic consumption and UK population

Sales are separated by broad- and narrow-spectrum groups, based on classifications in PHE (2015b),

EARS (2015) or Madaras-Kelly et al. (2014, 2015) (penicillin V has the same spectrum score as

amoxicillin but is typically classified as a narrow-spectrum antibiotic, for further information on

spectrum thresholds, see Appendix A-1). Antibiotic consumption fluctuates seasonally, with peaks

in winter and dips in summer. The seasonality is mainly driven by the consumption of broad-

spectrum antibiotics (penicillins and macrolides), and is likely caused by the surge of respiratory

7Defined daily doses (DDD) adjustment is a measurement that allows for comparability of quantity across drugs and is

maintained by World Health Organization (WHO).
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tract infections and virus-induced secondary bacterial infections in cold seasons (Suda et al., 2014,

Hendaus et al., 2015).

Enteral (or oral) drugs cover over 90% of the market in value, consisting of 44 different molecules.

Parenteral (or inhaling) antibiotics are used in more limited and serious situations. Of the oral

drugs, Public Health England (PHE, 2015b) recommends 18 different molecules as first and second

line drugs to treat common primary community-acquired diseases, while others are to be used

more sparingly. We focus on this sub-group of drugs classified as first or second line treatment in

our analysis. The final data set we used in our demand estimation contains 11,417 observations

consisting of sales of 131 distinct products over 120 months and spanning across 16 molecules (we

combined three molecules with very small shares into one group) and 18 different formulations

(tablets, capsules etc.). Overall, the number of products reduced slightly over the years.

Table 1. Shares, Prices and Concentration by Molecule

2004 2008 2012

Spectrum Share Price HHI Share Price HHI Share Price HHI

Broad-spectrum
Amoxicillin 13.50 28.40 0.26 0.73 29.81 0.15 0.90 29.78 0.10 0.97
Co-amoxiclav 29.50 4.46 1.66 0.53 5.13 0.69 0.46 5.37 0.38 0.53
Cefalexin 19.25 3.22 0.69 0.72 3.06 0.46 0.53 1.51 0.29 0.52
Ciprofloxacin 39.75 2.56 2.39 0.67 2.74 0.30 0.49 1.98 0.24 0.56
Doxycycline 38.75 6.99 0.30 0.67 7.76 0.11 0.73 10.27 0.07 0.81
Levofloxacin 39.75 0.16 2.78 1.00 0.13 2.11 1.00 0.06 1.46 0.52
Ofloxacin 39.75 0.30 1.98 0.48 0.21 0.90 0.45 0.19 1.20 0.47
Tetracycline 38.75 0.62 0.14 1.00 0.47 1.12 1.00 0.28 0.99 1.00
Others (3 mols) 19.50 0.07 1.72 1.00 0.04 2.07 1.00 0.06 1.59 1.00

Narrow-spectrum
Azithromycin 12.25 0.39 2.62 1.00 0.82 1.98 0.53 1.54 1.18 0.52
Clarithromycin 12.25 3.38 1.61 0.92 4.64 0.63 0.55 7.96 0.34 0.41
Clindamycin 10.75 0.13 4.40 0.48 0.16 8.22 0.42 0.18 2.01 0.45
Erythromycin 12.25 11.86 0.58 0.52 10.15 0.42 0.50 7.24 0.27 0.56
Flucloxacillin 4.25 5.95 0.96 0.59 6.18 0.72 0.78 7.02 0.62 1.00
Penicillin V 13.50 4.37 0.56 0.96 4.17 0.53 0.96 4.06 0.58 1.00
Trimethoprim 4.25 7.01 0.12 0.88 6.64 0.08 0.89 6.30 0.10 0.99

†1st/2nd line (18 mols) 79.89 0.62 0.71 82.13 0.36 0.75 83.78 0.26 0.81
†Non-1st/2nd line (26 mols) 20.11 0.65 0.84 17.87 0.38 0.90 16.22 0.26 0.85

Market share is by DDD quantity. Price is per unit of DDD (weighted by share of individual drugs). HHI is
calculated over different firms based on their quantity shares within each molecule.
†1st/2nd line groups refer to oral drugs recommended by PHE to be used for treating common community acquired
diseases or not (and HHI is average of molecule HHI weighted by share).

The detailed market structure of selected antibiotic molecules is summarized in Table 1. The top

selling broad-spectrum antibiotic is amoxicillin, whose shares stayed stable around 29% over the

years while that of co-amoxiclav increased over the years. Other top broad-spectrum drugs listed

in the table lost market shares. Shares of narrow-spectrum drugs generally increased except for

erythromycin which declined from 11.86 to 7.24%. In addition, average price per DDD for each

molecule has also dropped. For instance, price of amoxicillin has dropped from £0.26 per DDD

to £0.10 between 2004 and 2012. Herfindahl-Hirschman Index (HHI) are calculated based on firm

level shares within each molecule, and show that at this level the market is fairly concentrated.
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This may be seen as an indicator of high profit margins in this market. Even though there are 35

different manufacturers involved in the production of these 44 different molecules, only a limited

number of firms are producing the same molecule. Further, the HHI index for number of molecules

has increased over time. For instance, HHIs of amoxicillin and flucloxacillin have increased from

0.73 and 0.59 to 0.97 and 1 respectively. Note that per the limitation mentioned earlier regarding

identity of generic manufacturers, the HHI index is biased upward.

3. Econometric specification

3.1. Utility. We abstract away from agency problem where physician incentives may not be aligned

with their patient and assume that the decision maker is a combination of a general practitioner and

patient, which we will simply shorten to patient or consumer. Since the NHS sets annual budget

for PCT, which in turn monitor GP spending, this would make GPs sensitive to prices. Thus our

combined decision maker’s utility is function of prices and drug characteristics. In this setting, the

utility for patient i choosing drug j in period t is given by

Uijt = xjtβi + αi(yit − pjt) + ξjt + εijt, (1)

where xjt is the row vector of observable characteristics of drug j in period t, and βi is the corre-

sponding column vector of random coefficients (i.e., taste parameters) which vary by patient. The

variables pjt and yit are price of drug j and the budget of patient/physician i in period t, respec-

tively. The coefficient αi is also random and captures heterogeneous preferences toward drug price

and ξjt is the unobserved characteristics of drug j and εijt is an iid idiosyncratic error term.

In our regressions the vector of observable drug characteristics includes a constant, number of

different packs a drug is sold by, and the spectrum of the molecule the drugs is linked to. In

addition, we control for drug dummies, time trend, and seasonalities. We follow Chamberlain (1982)

and Nevo (2000), and use the minimum distance method (basically a feasible GLS regression) to

back out the coefficients of time invariant variables. The estimated drug dummy coefficients are

regressed against a constant, the spectrum of the molecule, and dummies for generic drugs and

liquids. We model taste heterogeneity of patients as functions of unobserved patient characteristics.

Formally, this is expressed as (
αi
βi

)
=
(
α
β

)
+ Σvi, vi ∼ N(0, I). (2)

The scalar α and the vector β are the mean utility of price and drug characteristics and are common

to all patients. The column vector vi captures unobserved patient-specific preferences towards drug

price and drug characteristics. Following the literature, we model that vector to be random and

follow a multivariate standard normal distribution where Σ is a diagonal scaling matrix.
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Each period t patient i selects the drug that maximizes his/her utility. The aggregate market share

for drug j in period t is the average probability the drug is chosen from the set of all drugs, inclusive

of an outside option. Specifically, by separating out the utility in a mean effect δjt = xjtβ−αpjt+ξjt
and deviations for that mean µijt = [pjt, xjt] Σvi, we are able to derive the predicted market share

of drug j in period t.

3.2. Market shares. Letting the error term εijt follow an Extreme Value distribution, it is possible

from a comparison of all utilities Uijt and Uij′t with j 6= j′ = 0, 1, · · · , Jt, to obtain random

coefficients multinomial logit probabilities. Each drug’s market share is the result of the multivariate

integral of these probabilities over the random vector vi. This integral has no simple analytical

solution, and therefore the vector of unobserved patient heterogeneity has to be simulated from the

multivariate standard normal distribution, so to obtain the approximation

sjt =

∫
vi

exp (δjt + µijt)∑
l exp (δlt + µilt)

dFv u
∑
i

1

ns

exp (δjt + µijt)∑
l exp (δlt + µilt)

, j, l = 0, 1, · · · , Jt. (3)

Logit and nested logit models can be constructed by imposing small adjustments to the random

coefficients logit model (see Berry (1994)). For instance, if the coefficients are not random, then

equation (1) simplifies to the logit model, in which case the market share is simply

sjt =
exp (δjt)∑
l exp (δlt)

j, l = 0, 1, · · · , Jt. (4)

The nested logit model is an extension of the logit model after decomposing the error term εijt into

ε1imt + (1−σ)ε2ijt. In this case, ε1imt is a random individual taste for molecule m and ε2ijt is a random

individual taste for drug j. The parameter σ measures the intensity of within molecule correlations.

In this model, patients first choose the molecule and then the drug within that molecule. The

market share of drug j in period t is obtained by interacting the within molecule market share

s(j∈m)t and the molecule’s market share smt. Thus, the nested logit formula is

sjt = s(j∈m)tsmt, with s(j∈m)t =
exp(δjt/(1− σ))

Dmt

and smt =
D

(1−σ)
mt

exp(δ0t) +
∑Mt

k=1D
(1−σ)
kt

, (5)

where Dmt ≡
∑

lexp(δlt/(1− σ)), l = 1, · · · , Jmt, which captures all drugs in molecule m in period

t. We estimate logit, nested logit and random coefficients logit models.

3.3. Outside option. For the logit and nested logit models the econometric demand equations are

derived by taking the natural log of the ratio between the market share of the product j and that

of the share of an ‘outside’ option s0. Typically, the outside option is a residual category which

includes the possibility of not purchasing any product, and its product characteristics (including

price) are not observed and its utility is standardized to zero. The literature has taken different

approaches to estimating the share of the outside option by first defining the potential market.

Since the market that we study consists of antibiotics that are recommended as first or second line
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use for bacterial infectious disease by PHE (2015b), we model the outside option to be all other

antibiotics that are not considered first or second line use. Thus, we define the outside option

as residual category of antibiotics whose sales and product characteristics we also observe in our

data. This adjustment slightly changes the functional form of the ‘traditional’ econometric model

but preserves the convenient feature of invertibility of the market share (demand) equation. For

instance, when the outside good is defined as above, the simple logit specification becomes

ln(sjt)− ln(s0t) = (xjt − x0t)β − α(pjt − p0t) + (ξjt − ξ0t). (6)

Note that this equation requires that we observe the outside good price p0t and characteristics x0t

(see also De Groote and Verboven (2018)). We set these equal to the price and characteristics of

the antibiotic with the maximum share among all the drugs in the residual category and s0 as the

sum of their shares. Thus by defining x̂jt ≡ xjt − x0t, p̂jt ≡ pjt − p0t and ξ̂jt ≡ ξjt − ξ0t, we update

our definitions of δjt and µijt and use these to compute the share equations as given above.

3.4. Oligopoly supply. The supply side is the result of multi-drug profit maximizing companies

that choose prices as strategic variables in a differentiated products setting. The resulting equilib-

rium in the market is Nash in prices. The pricing equations obtained from the profit maximization

are used for two purposes. Firstly, they are utilized to back out the marginal costs. Secondly, after

the parameters are estimated and marginal costs backed out, they are employed to calculate the

new equilibrium prices that follow the counterfactual scenario we wish to study.

In this model, drugs are assumed to have constant marginal cost of production and distribution,

cjt. Each firm f = 1, · · · , Ft controls the vector of prices (pft) and maximizes its profit, given the

prices of all drugs produced by other firms p−ft:

max
pft

Πft (pft, p−ft) = max
pft

∑
l∈Fft

(plt − clt) qlt (pt), (7)

where Fft is the set of antibiotics produced by firm f in period t. Since the total unit sales can be

expressed as qjt = sjtMt, where Mt is the population of individuals that have contracted a bacterial

infection in period t. The first order condition of profit maximization is

sjt (pt) +
∑
l∈Fft

(plt − clt)
∂slt (pt)

∂pjt
= 0 ∀j ∈ Fft. (8)

By defining ∆t a matrix whose element ∆(jk)t = −∂skt/∂pjt if j and k belong to the same firm and

zero otherwise, it is possible to rewrite the system of first order conditions in matrix form as

pt = ct + ∆−1t st︸ ︷︷ ︸
mt

, (9)

where mt captures the vector of mark-ups.
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Each period t, from the vector of pricing equations in Eq. (9) it is possible to construct a log-

transformation of the marginal cost for drug j as:

ln(pjt −∆−1j.t st︸ ︷︷ ︸
mjt

) = ln(cjt) = wjtγ + ωjt, (10)

where γ are coefficients and wjt represents a vector of observable drug characteristics, which includes

firm, molecule and form dummies, along with pack variety and time trend. The idea behind the

inclusion of pack variety as control is that if drugs have different pack varieties, they may also

have a different unit marketing and production cost. In addition, with firm dummies we capture

firm efficiencies as well as heterogeneity in transportation and import costs. With form dummies

we express cost asymmetries in producing different forms and, finally, with molecule dummies we

represent disparities in producing drugs that are more or less complex to manufacture. The term

ωjt is the random unobserved part of marginal cost.

Given that the marginal costs are constant, they remain unvaried under different counterfactuals,

in which case under the new counterfactual scenario it is possible, each period t, to find the new set

of equilibrium prices that solve the new system of nonlinear simultaneous equations in Equation 9.

3.5. GMM Estimation. We assume that the unobservables in demand and pricing equation are

conditionally independent of all observed product characteristics xt and cost shifters wt, yielding

E(ξjt|zt) = E(ωjt|zt) = 0, with zt ≡ (xt, wt). We estimate demands and pricing equations simul-

taneously and account for correlation between these. We therefore avoid imposing the restrictive

assumption of a diagonal covariance matrix E
(
(ξjt, ωjt)

′ (ξjt, ωjt) |zt
)

= Ω. Further, we denote with

ξ̃jt and ω̃jt the standardised version (based on Ω−1) of unobservables in demand and pricing equa-

tions. Finally, let Hjt(zt) be a L × 2 matrix of instruments. With these elements it is possible to

express a generalised method of moments (GMM) function that the estimator of parameters θ can

minimise,

θ∗ = arg min G =

(
1

T

T∑
t=1

1

Jt

Jt∑
j=1

Hjt (zt)

(
ξ̃jt

ω̃jt

))′(
1

T

T∑
t=1

1

Jt

Jt∑
j=1

Hjt (zt)

(
ξ̃jt

ω̃jt

))
. (11)

The vectors of linear parameters β and γ can be concentrated out of the minimisation of equation

(11), so to relegate the nonlinear search over the (α, σ) vector of parameters. To estimate the model

we employ the fixed points (NFP) algorithm in Matlab with tight convergence criterion (10−12) for

the inner loop.8 We recalculate the optimum under several starting points, since the nested fixed

points algorithm may sometimes only give local minima, as illustrated by Knittel and Metaxoglou

8We also considered Mathematical Programming with Equilibrium Constraints (MPEC) algorithm suggested by Dubé et al.

(2012), where the contraction mapping in NFP is replaced by constrained minimization based on market shares. However, in

our case we have too many products to handle MPEC. Nevertheless, Reynaert and Verboven (2014)) show that both algorithms

give, in principle, identical results when a tight inner loop is used. So, we are confident that NFP does a satisfactory job.
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(2014). Our results are robust to the initial values of the nonlinear parameters, especially when the

optimal instruments (discussed below) are used.9

3.6. Instruments. Price and, in the case of nested logit econometric specification the within group

market share, are endogenous variables. The price variable is endogenous because of its correlation

with unobserved drug quality; the within group share variable is endogenous because is calculated

using market shares and therefore is, by construction, correlated with the error term in demand.

We use the exogenous product characteristics and a proxy for wholesale price as instruments for

prices. The proxy for wholesale price is a good instrument as it is correlated with the retail price

by definition (see Appendix A-3 for further description of this variable). In addition, we employ

BLP instruments, which are constructed as the sum of other drug characteristics produced by the

same firm. They are correlated with prices as they enter the mark up function via the set of first

order conditions. In our data, the constant and the pack varieties are used to construct the BLP

instruments. Additionally, count of drugs by molecule is a good instrument for the within market

share. Variation over time of number of drugs produced by a firm and of number of dugs clustered in

a molecule allow us to control for drug dummies in demand. The instruments have to be consistent

with the exogenous variables and therefore need to be demeaned by the outside option (see equation

(6)).

In a version of our estimates we use optimal instruments. These can be constructed as conditional

expectations of the derivative of unobservables with respect to the parameters. This procedure

minimizes the asymptotic covariance matrix of parameters (Chamberlain, 1987). Unfortunately,

computing the expected value of the derivatives of the unobservables directly from data is infeasible

because it requires us to know the true value of parameters, as discussed in Berry et al. (1995).

Fortunately, approximations of optimal instruments are normally used (see Berry et al. (1999) and

Reynaert and Verboven (2014)). These are improvement relative to the original instruments but

are not as efficient as the true optimal instruments. The idea is that it is possible to compute the

derivatives evaluated at the expected value of the unobservables (i.e. E[ξjt] = E[ωjt] = 0), which

means that it is practicable to compute the optimal instruments from derivatives of predicted mar-

ket equilibrium prices and shares estimated in the first stage of a GMM procedure. Specifically, we

first use all non-optimal instruments mentioned above to obtain the initial values of the parameters

and then calculate new equilibrium prices and market shares from the pricing and demand equa-

tions - these calculated at the expected mean utilities and marginal costs, and conditional on the

parameters. Optimal instruments are Jacobian matrices of the new predicted prices and market

shares at the given estimated parameters.10

9Berry et al. (1995) provide details on the functioning of the algorithm for the random coefficients logit model.
10See appendix in Berry et al. (1999) and Reynaert and Verboven (2014) for detailed explanation of the procedure.
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4. Results

4.1. Regression Coefficients. Summary statistics of relevant product characteristics are given in

Table 2. The mean share of a drug is 0.01 but varies from 0 to .33 with a mean price of £1.16 per

DDD with also significant variation. The outside option (other antibiotics) varies from .13 to .22

with a mean value of 0.18. Pack variety varies from 1 to 10 with a mean of 2.68.

Table 2. Summary statistics

Variable Description Mean Std. Dev. Min Max

sjt Share of drug j 0.009 0.029 0 0.331
s0t Share of the outside option 0.182 0.019 0.130 0.224
ln(sjt/s0t) Dependent variable -5.459 2.465 -15.63 0.929
ln(s(j∈m)t) Within molecule nest market share -3.842 2.677 -15.96 0
pjt Price (in pounds) per DDD 1.162 1.232 0.038 11.46
x1jt Spectrum-score 18.30 10.66 4.250 39.75
x2jt Pack varieties 2.684 1.721 1 10
x3jt Dummy: Unidentified generics 0.337 0.473 0 1
x4jt Dummy: tablet 0.418 0.493 0 1
x5jt Dummy: capsule 0.227 0.419 0 1
x6jt Dummy: oral liquid 0.341 0.474 0 1
x7jt Dummy: extented release 0.014 0.116 0 1
x8jt Age 39.58 12.24 15 58

Data consists of 11,417 observations of 131 distinct products over 120 months spanning
16 molecules and 18 different formulations. These 18 different formulations are collapsed
into four broad categories: tablet, capsule, extended release (tablet or capsule), and oral
liquid in the regression analysis.

Table 3 provides selected regression coefficients from alternative specifications. The top part of

the table shows estimates for the demand model, while the lower part shows selected regression

coefficients for the price equation (equation 15) when it is estimated jointly with the demand side.

Column (1) is a simple OLS estimate of the logit demand, column (2) provides IV estimates where

the instruments are as described earlier, and column (3) is also an IV estimate of the logit demand

model, but is now estimated jointly with the supply equation (parameters for which are given in the

lower part of the table). All three regressions include brand dummies and the first-stage F-statistic

for the excluded instruments in column (2) is 66.75. Moving from column (1) to (3), the coefficient

on price becomes negative and increases in magnitude. Consequently, demand becomes elastic more

often, i.e. for more products and in more periods (markets), as indicated in the last row of the table

(for the simple logit case, own elasticity for product j in period t is given be ηjt = αsjt(1− sjt) and

hence varies by product and period).

As a first attempt to overcoming the IIA problem associated with logit demand, column (4) shows

IV results from a nested logit model, also jointly estimated with the price equation. We treat both

price and ln(s(j∈m)t) as endogenous. The nests are based on molecules and the model allows for

correlations of the error term between drugs in the same nest. The estimated group parameter σ

is 0.529 and is significantly different from both zero and one, suggesting that drugs in the same

nests are more similar than drugs in other groups. Also, demand is elastic in most cases as shown

in the last table. However, unlike the previous logit models, the coefficient on pack varieties is
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Table 3. Selected parameters

L L IV L DS NL DS RCL DS RCL DS opt

(1) (2) (3) (4) (5) (6)

Demand side parameters
β σ β σ

Price 0.024 -0.810a -6.499a -10.283a -9.989a 5.256a -9.995a 5.263a

(0.016) (0.136) (0.135) (0.123) (0.368) (0.243) (0.353) (0.189)

ln(s(j∈m)t) 0.529a

(0.043)

Packs 0.419a 0.403a 0.306a -0.057a 0.219a 0.447 0.252a 0.447a

(0.02) (0.015) (0.011) (0.019) (0.040) (0.419) (0.022) (0.064)

†Spectrum 0.013 -0.003 -0.010 0.818a -0.027 0.817a

(0.012) (0.010) (0.036) (0.226) (0.035) (0.039)

Time -0.006a -0.012a -0.051a -0.079a -0.049a -0.048a

(0.0004) (0.001) (0.001) (0.001) (0.008) (0.002)

Spring 0.049b 0.057b 0.066a 0.048b 0.688a 0.680a

(0.027) (0.030) (0.026) (0.026) (0.315) (0.044)

Fall 0.057a 0.077a 0.228a 0.301a 0.389a 0.286a

(0.027) (0.031) (0.026) (0.026) (0.093) (0.030)

Winter 0.146a 0.168a 0.298a 0.396a 1.459a 1.410a

(0.028) (0.031) (0.026) (0.026) (0.662) (0.076)

†Generics 2.184a 0.223 1.290a 1.281a

(0.289) (0.246) (0.326) (0.328)

†Oral Liquid -0.748a 0.099 -1.095a -1.072a

(0.342) (0.241) (0.348) (0.353)

†Cons -8.585a -8.139a -2.651a -1.430a -3.978a 0.743 -3.213a 1.160
(0.332) (0.212) (0.502) (0.406) (1.191) (3.061) (1.144) (0.826)

Supply side parameters‡

Packs -0.063a -0.160a -0.053 -0.053a

(0.011) (0.008) (0.463) (0.025)

Time -0.003a -0.012a -0.003 -0.003
(0.0004) (0.0003) (0.0125) (0.0026)

Cons 0.567a -0.148a 0.572 0.576a

(0.051) (0.035) (1.660) (0.229)

Obs 11417 11417 11417 11417 11417 11417
% inelastic >50 5.3 1.9 3.5 3.5

Robust standard errors are in parentheses. Superscripts a, b imply the significance of coefficient differing
from zero at 5 or 10% respectively. Instruments used in regressions (2-6). Columns (3-6) jointly estimate
demand and supply side equations. Column (6) uses optimal instruments.
†Coefficients retrieved from minimum distance method as product dummies are included.
‡ Supply side also includes other product characteristics not shown.

negative and significant. To further relax the IIA restrictions (and to avoid treating ln(s(j∈m)t)

as endogenous), the next two specifications show estimated regression coefficients from random

coefficients logit model (RCL) which allow free correlation of the error term across all drugs. These

two models are also estimated jointly with the price equation, where the difference in that in column

(6) we additionally use the 2-step optimal instruments. Further, we use brand dummies in the linear

part of the model, and hence mean coefficient on spectrum, generic, and formulation (liquid) are

15



recovered via the distance method described earlier. However, in the non-linear part, we include

number of pack varieties and spectrum value of the drug (and price).

As we move from column (1) to column (6), generally the price coefficient increases in magnitude.

Further, between (5) and (6), estimates are mostly similar but the standard errors become smaller

in (6), especially for the non-linear parameters. We choose the last column as the main set of

results which we describe further (but where appropriate will also provide comparisons with other

specifications). In column (6), σp is 5.26 and is statistically different from zero indicating that

there is significant variation in marginal (dis)utility of price around the mean value of −9.99. Thus

price sensitivity varies in the underlying population, and may stem from the fact that practitioners

have uneven professional experience, and react differently to national media and guidelines on

cost saving (Scoggins et al., 2006). Similarly, while the coefficient on number of pack varieties

is positive (excepted for the nested logit), indicating higher marginal utility if drug is available

in multiple dosages and pack sizes, there is again a statistically significant variation around the

mean marginal utility indicating that some patients value the increase in dosage and size variety

more than others. Time trend is negative across all estimations, which implies that utility of

consuming common antibiotics is reducing over time compared to the outside option (not first or

second line antibiotics), which may be induced by increasing resistance level. As expected, the

utility of consuming antibiotics in other seasons, especially in winter, is higher than in summer due

to the high preference of using antibiotics to treat respiratory tract infections, and virus-induced

secondary bacterial infection in cold seasons (Suda et al., 2014, Hendaus et al., 2015).

Among the coefficients recovered using the minimum distance method, the mean marginal utility

associated with the spectrum is not statistically different from zero, but the RCL shows there is

significant heterogeneity in the taste parameter for spectrum.11 Intuitively, it suggests that although

on average patients and doctors do not exhibit strong preferences for broad- or narrow-spectrum

antibiotics, some individuals do derive higher marginal utility from broad-spectrum antibiotics and

vice-versa and hence, all else equal, their utility level would change if they were given drug with a

different spectrum value. The supply side estimation shows the factors that affect the marginal cost

of production. All estimations show similar results (the equation also included dummy variables for

firm, molecule and formulation, where the firm and molecule combination also controls for generic-

branded differences). Over time, the marginal cost of producing antibiotics is decreasing, perhaps

because of improvements in production technologies (Arcidiacono et al., 2013). Further, If a product

has more pack varieties, its marginal cost tends to be lower. This may be consistent with findings

reported elsewhere (see Kekre and Srinivasan, 1990).

11From the brand dummies we recovered the mean utility but the variable also enters the model non-linearly and hence

allows us to estimate the associated σ value.
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Table 4. Price elasticities

η SD

Own-price elasticity -3.310 4.835
Cross-price elasticity 0.172 0.308

%∆sB/%∆pB 0.288 0.471
%∆sN/%∆pB 0.148 0.199
%∆sB/%∆pN 0.058 0.113
%∆sN/%∆pN 0.166 0.171

Elasticities are weighted by market shares

4.2. Elasticities and substitution patterns. Based on the estimates in column (6), we computed

own- and cross-price elasticities for all the antibiotics in our sample. For the 131 drugs, we have

131 own-price elasticities and 131× 130 cross-price elasticities for each market (120 months). The

averages and standard deviations are summarized in Table 4, where averages are weighted by

product market share (weighting methodology is described in Appendix A-2). Mean own-price

elasticity for a given antibiotic is -3.31 with standard deviation of 4.84, while the mean cross-price

elasticity is 0.17 with standard deviation of 0.31.

To understand the substitution possibilities across drugs with different antibacterial resistance spec-

trum, we partitioned cross-price elasticities by broad- and narrow-spectrum groups. Thus, a 1%

increase in price of a broad-spectrum antibiotic is associated with 0.288% increase in share of an-

other broad-spectrum drug, and only a 0.148% increase in the share of a narrow-spectrum drug.

Similarly, an increase in price in the narrow spectrum drug has a larger substitution into another

narrow-spectrum drug than to a broad-spectrum drug. These patterns suggest that broad-spectrum

drugs are closer substitutes to each other than to drugs in the narrow-spectrum. The underline

reason might be that broad-spectrum molecules may have larger overlapping in indications, as one

family of bacteria may be susceptible to many of them. By contrast, drugs with narrow-spectrum

molecules have smaller cross-price elasticities, and share of broad-spectrum drugs is less affected by

price changes of narrow-spectrum ones.

As discussed previously, the antibiotic market is in urgent need of new molecules as bacteria develop

resistance to old ones. There are only nine new molecules that got approved by FDA since 2000, of

which we observed sales for five in the UK data set. Since these new molecules are not considered

as first or second line drugs for common infections, they are included in our ‘outside’ option. For

the remaining, we tabulated un-weighted own-price elasticities by the age of the molecule (where

age is computed as the difference between 2003 and the earliest launch year of a molecule anywhere

in the world). If newly launched molecules are more sensitive to price changes, it may indicate

that they are less profitable than older products and hence firms may hesitate to invest further.

Figure 2 shows that indeed newer molecules tend be more elastic to their own price changes and

are potentially less profitable relative to the older ones.
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Figure 2. Elasticity by molecule age

Figure 3. Marginal costs

4.3. Costs and profitability. Using the estimated demand coefficients, we use Equation 9 to

back out marginal costs and profit margins for each product. Figure 3 shows average (weighted by

volume) marginal costs over time for both branded and generic drugs, as well as by antibacterial

spectrum classification. Overall marginal cost declined by more than 50% over this period, and

branded drugs have higher estimated marginal costs than unbranded ones. Our result is consistent

with Arcidiacono et al. (2013) who find that marginal cost of generics tend to decrease faster over

time than those of branded ones even though their costs are similar when the generic just entered.

They argue that generics may benefit more from scale effects and from efficient distribution channels.

Additionally, Ball et al. (2018) find that in the US manufacturing recalls are higher for generic drugs,

especially when competition is intense. They argue that generic manufacturers may be able to

compensate for the quality of drugs in response to price competition and generic firms intentionally

seek to save production costs to improve efficiency. For example, they can reduce labour costs,
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purchase cheaper ingredients from suppliers, find cheaper ways of making their products, replace

expensive manufacturing process with lower cost substitutes and reduce non-value-added activities.

Similarly, our estimates suggest that broad-spectrum antibiotics are cheaper to produce than the

more specialized narrow-spectrum antibiotics. Since an increase in resistance is a negative exter-

nality, we investigate further how demand (and welfare) would be affected if production costs were

the same.

Next, using Equation 9 again, we also backed out the price-cost margins associated with each

drug. Note that the implied margin is between the retail price and the marginal cost of production

and hence it contains margins earned by manufacturers, wholesalers and retailers. Our data and

estimation strategy does not allow these to be separated into individual components in the supply

chain. Table 5 summarizes associated margins (weighted averages) by molecules, broad-narrow

spectrums, snap-shots over-time and also provides comparison with estimates from the nested logit

model.

Table 5. Price-cost margins

Margin Margin by year and type from RCL

NL RCL 2004 2008 2012

All Branded Generics All Branded Generics All Branded Generics

Broad-spectrum 32.7 41.2 28.8 5.8 35.5 45.2 10.4 58.6 57.9 15.5 72.7
Amoxicillin 63.3 81.6 71.8 9.7 82.5 84.9 12.3 88.2 94.0 15.6 94.9
Co-amoxiclav 8.3 10.7 5.3 4.8 5.4 11.6 11.5 11.8 21.5 16.7 30.5
Cefalexin 13.1 15.9 11.9 12.8 11.8 18.0 19.8 17.2 28.0 31.5 26.3
Ciprofloxacin 11.6 11.4 5.4 2.5 6.1 26.1 2.8 49.2 29.6 3.4 41.7
Doxycycline 56.1 70.9 63.7 10.3 75.5 85.5 8.1 98.8 89.3 11.2 98.5
Levofloxacin 4.2 3.0 3.4 3.4 - 2.8 2.8 - 3.7 3.4 3.9
Ofloxacin 4.7 4.4 3.1 3.2 2.9 6.3 4.7 7.6 4.6 6.0 3.7
Tetracycline 14.2 9.2 45.5 - 45.5 5.9 - 5.9 6.1 - 6.1
Others (3 mols) 3.1 4.7 4.1 3.5 34.0 4.3 4.3 - 8.2 8.2 -

Narrow-spectrum 15.1 30.5 23.5 16.6 29.0 27.9 19.7 31.4 40.1 18.8 44.9
Azithromycin 4.2 8.1 5.3 5.3 - 6.8 6.7 7.1 11.1 10.0 11.6
Clarithromycin 9.8 18.3 9.5 9.5 9.5 19.0 15.9 25.4 35.0 22.3 45.6
Clindamycin 1.4 3.6 4.3 4.7 3.8 2.6 4.4 2.4 6.1 4.7 8.1
Erythromycin 16.7 28.1 21.0 16.0 23.3 30.0 19.2 35.8 44.2 25.4 52.1
Flucloxacillin 12.5 47.9 37.8 51.8 32.8 43.6 64.9 40.7 60.3 24.1 60.3
Penicillin V 17.2 20.1 19.7 - 19.7 22.0 - 22.0 21.0 - 21.0
Trimethoprim 68.2 82.5 79.7 30.3 82.2 80.5 36.6 83.2 83.5 43.7 83.5

Mean 22.9 35.2 26.3 12.7 33.0 35.1 16.0 43.0 46.2 17.4 53.9

The mean listed in the last row is the weighted average for all drugs not considered as the outside option.

Price-cost margin estimated by NL model is around 22.9%. In the nested logit, if some drugs in

different molecule groups are in fact close substitutes, the model specification would not be able

to properly account for this substitution pattern, and could give a downward bias in price-cost

margins. By comparison, RCL would in principle overcome this difficulty. Based on the RCL

model, the price-cost margin for antibiotics industry is 35.2% on average, rising from 26.3% in 2004

to 46.2% in 2012. This increase in profitability is associated with the decline in marginal costs

noted earlier.
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Table 6. Revenue, estimated profits and margins for selected firms

2004 2008 2012

Revenue Profit Margin Revenue Profit Margin Revenue Profit Margin
(£.m) (£.m) (%) (£.m) (£.m) (%) (£.m) (£.m) (%)

Abbott 22.01 2.59 11.30 7.54 1.37 16.23 5.47 1.43 22.32
Bayer 3.81 0.10 2.47 1.56 0.05 2.83 0.65 0.03 3.45
GSK 14.63 3.30 21.66 7.43 0.96 11.56 6.02 1.17 16.64
Novartis 2.51 0.35 13.47 3.10 0.34 9.63 1.87 0.56 25.82
Pfizer 5.37 0.35 6.33 4.85 0.37 6.74 3.72 0.39 9.05
Sanofi 3.45 0.12 3.47 1.71 0.06 3.28 0.72 0.04 5.17

Generic 3.98 1.36 22.11 3.30 1.58 27.96 2.97 1.85 30.68

Revenue and profit is the sum of all products related to the firm within the year, and is deflated by
CPI in 2003. Price-cost margin is the quantity weighted average margin over all products by a given
manufacturer. The generic firm is the weighted average across all such manufacturers.

Margins also vary across molecule groups and differ by brand types (branded or generics). Generally,

narrow-spectrum antibiotics have relatively smaller margins than broad-spectrum ones, though the

gap shrank in recent years. In 2012, the average margin for broad-spectrum molecules is 49.0%,

and 44.1% for narrow-spectrum agents. To familiarize with the price-cost margin for each molecule

group, we take amoxicillin as an example, but similar patterns hold for other molecule groups.

Amoxicillin has a relatively high margin (81.6%), which increases over time to reach 94% in 2012.

It is not surprising that the margin between retail price and manufacturer cost can be high. In

fact, by one estimate, the margin at retail level alone can be as high as 76.6% (Kanavos, 2007). On

the other hand, branded amoxicillins have significantly lower margins (less than 20%), while their

generic counterparts have much higher ones.

Generic drugs are on average much more profitable than branded ones. Although their margins

are similar for some molecule groups (e.g., cefalexin), the difference is dramatic in others (e.g.

ciprofloxacin), where unbranded drugs are much more profitable than branded ones. This difference

is mainly driven by the fact that unbranded drugs have lower prices, and also much lower marginal

costs. Interestingly, similar findings are reported in the U.S. market. Investigation from journalisms

finds that although prices of generics are generally lower than their branded counterparts, price-cost

margins can be higher for generics (Tanouye, 1998, Freudenheim, 2002), especially at the pharmacy

level.12 Due to consolidation in generic markets, margins earned by large generic manufacturers can

surpass that of many big brand-name companies as well. In addition, the slower rise of price-cost

margin of branded products may link to the aspect that branded drugs were required to cut price

in 2005 (7%) and 2009 (3.9%) by the Pharmaceutical Price Regulation Scheme (PPRS) in the UK.

Following on from that, we also computed profit margins at firm level and tabulated those that are

generally considered research active firms (classification is based on Spellberg et al., 2004). These

12They find that pharmacies can mark up 1000% more than purchasing cost on generics, comparing to 10-30% on branded

drugs. It roughly equals to 90% margins for generics or 9-23% for branded drugs if retail price is used as the base.
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were then compared to a typical generic manufacturer. While a drug can be classified as branded or

generic, such classification is not always straightforward at firm level as a research active firm may

have subsidiaries that produce generic drugs for them.13 Nonetheless Table 6 shows revenues and

estimated profits (combined for manufacturer, wholesaler, and pharmacy) of all drugs associated

with select firms including those derived from their generic products. Among these research active

firms, Abbott and GSK have the highest revenues and profits in 2004 which declined substantially

by 2012. GSK’s decline in revenues and profits may be associated with price drop of their branded

amoxicillin product (Augmentin) which halved between 2004 and 2008. On the other hand, Bayer

(and later on Sanofi as well) have comparatively small profits. Overall though, other than GSK,

the profit margin for these firms have increased. By contrast, the price-cost margin of a typical

generic firm is 30.68% in 2012, up from 22.11% in 2004. Increasing margins in generic firms may

be the consequence of market consolidation as argued in Freudenheim (2002).

4.4. Policy Simulations. In this section we seek to answer what would be the effect on demand

and welfare cost of implementing supply side interventions that change the relative prices of broad-

and narrow-spectrum drugs conditional on the fact that PCTs operate under a fixed budget, and

GPs are responsible for keeping their prescription payments within those budgets. To that end, we

undertake two related exercise. First, if the marginal costs of producing broad-spectrum antibiotics

were on average as high as those of narrow-spectrum drugs, how much would it impact prices and

demand, and what would be the associated welfare loss of such an increase in production costs?

We take into account the change in consumer and producer surplus, as well as any additional costs

due to testing if more patients are switched to narrow-spectrum costs. Second, we carry out a more

refined exercise which imposes an ad valorem tax on a selected subset of broad-spectrum drugs and

ask the same question.14 It should be noted that the change in welfare computed in these exercises

is a partial story: it captures the change in demand and welfare loss associated with cost side

interventions, but does not measure aggregate societal benefits accruing from increasing demand

for drugs which do not exacerbate the AMR problem as much. As such these exercises provide an

upper bound on the costs and change in demand of implementing such policies, but do not quantify

the full long term benefits of slowing AMR. Nonetheless, given the dire predictions in the O’Neill

(2016) if AMR goes unchecked, it is well worth to explore these options.

13For example, GlaxoSmithKline (GSK) covers products produced by Beecham, which produces branded antibiotics. Most

products sold under Novartis are manufactured under its generic manufacturer Sandoz. Products under Sanofi are produced

by Zentiva (unbranded drugs) and Aventis (branded drugs).
14This exercise is in line with the suggestions by the Chair of the UK government’s Review on AMR (Wasley and Parsons,

2016). See https://tinyurl.com/ydg7qe4b.
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Algorithm. In the first exercise, we set the marginal cost of broad-spectrum molecules to the same

level as that of narrow-spectrum antibiotics.15 Next, given the original demand parameters and the

new marginal cost vector c̃t, we calculate the new equilibrium price vector p∗t and market shares in

each period such that

p∗t = c̃t + ∆−1t (st(p
∗
t ))st(p

∗
t )

holds. In the second exercise, we modify the equation to be solved prices as p∗∗t /(1 + τ) = ct +

∆−1t (st(p
∗∗
t ))st(p

∗∗
t ), where τ is a vector capturing 5%, 10% or 20% tax imposed on a subset of

broad-spectrum drugs but no tax on other drugs (thus, in the case of 5% tax, τj = 0.05 for some

drugs and τj = 0 for the non-taxed drugs). Given the estimated demand parameters, prices, and

product characteristics, individual indirect utility for patient i in market t from consuming drug j

is Uijt and the associated consumer welfare cwit with this choice is

cwit =
1

αi
max
j∈Jt

Uijt.

This money metric utility varies across consumers and by markets, and we can take it’s expectation

to computed expected consumer welfare (Small and Rosen, 1981). For the random coefficients logit

model, this expression simplifies to

E(cwit) =
1

ns

ns∑
i=1

1

αi
ln

[
exp(δ0t) +

Jt∑
l=1

exp(δlt + [plt, xlt]Hvi)

]
+Kt (12)

where Kt is period specific constant. While we do not know the value of the constant, it drops out of

calculations when we consider the change in expected consumer welfare associated with a change in

the price vector. For each simulation exercise, since we compute the change in quantity of each drug

(which is measured in defined daily dosages), we convert the change in quantity to bouts of illnesses

under the assumption that an antibiotic script is prescribed for 7 or 14 days. Next, as a conservative

estimate of additional cost of testing, we divide the change in quantity of narrow-spectrum drugs

by 7, and then multiply it by NHS tariff for microbiology testing for that year, again under the

conservative assumption that each of these additional bouts of infections would be first tested for

pathogen before prescribing any narrow-spectrum drugs.16 Finally, we also compute the change in

firm profits to consider the combined effects.

For our first scenario where we set the marginal costs of the broad-spectrum drugs to be same

as narrow-spectrum drugs, the left panel in Figure 4 plots the mean values of original and new

(equilibrium) prices by year. While the mean price of narrow-spectrum does not change much,

prices of broad-spectrum antibiotics jump up but stay slightly below those of the narrow-spectrum

15We first compute the share weighted average marginal cost for broad- and narrow-spectrum drugs, and then added this

difference to the actual marginal cost of each broad-spectrum drug. This was done separately for each period but average

increase the cost by about £0.20.
16We used NHS unit cost for “currency code” DAPS07 (microbiology), which is a case-mix adjusted unit cost by service

areas. See https://www.gov.uk/government/publications/nhs-reference-costs-2015-to-2016.
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Figure 4. Counterfactual prices and sales

drugs. However, there is a significant shift in demand as shown in the panel on the right, where

the demand for broad-spectrum falls below that of the narrow-spectrum drugs, and the demand for

narrow-spectrum antibiotics shifts up (by 28.4% and 43.4% on average respectively).

Table 7. Welfare Changes – Counter factual: higher marginal costs of broad-spectrum

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 Mean

%∆q (Broad) -15.2 -33.2 -35.1 -30.2 -31.3 -23.2 -28.3 -30.7 -28.1 -28.4
%∆q (Narrow) 21.6 49.3 52.7 48.0 49.3 35.4 43.5 46.9 43.8 43.4

∆ CS -183.3 -442.7 -470.9 -452.3 -450.1 -341 -401.9 -465.2 -503.4 -412.3
∆ profit -61.3 -109.8 -130.1 -147.4 -176.7 -144.5 -185.7 -199.8 -220.4 -152.9
∆ testing cost -358.7 -814.8 -869.7 -945.5 -836.3 -699.2 -867.6 -928.6 -784.3 -789.4
∆ tax revenue 199.3 380.6 422.6 451.1 489.8 407.4 466.3 505.2 546.4 429.8
Total -403.9 -986.7 -1048.1 -1094.2 -973.3 -777.3 -988.9 -1088.5 -961.7 -924.8

Note: Welfare changes are per 1000 UK population in that year.

The associated change in welfare per 1000 population by year is summarized in Table 7. On average,

the estimated loss is £925 per 1000 per year, of which £412 is the loss in consumer welfare and

£153 is the loss to the companies due to increased unit costs. The largest component, £789 is due

to additional testing for patients who would be prescribed narrow-spectrum drugs. However, some

of this can be off set by the increase in tax revenue (£430) if unit cost for broad spectrum is increase

via taxes. Losses are larger in later years as greater number of consumers are shifted from broad- to

narrow-spectrum drugs. In year 2012 (the last complete year of our data), the total loss in welfare

is £962 per 1000 capita, which adds up to £61.26 million for the UK in total.

For the hypothetical tax exercise with selective taxing, we use data from 2012 and apply 5%, 10% or

20% tax rate to co-amoxiclav, quinolones and cephalosporins. These are broad-spectrum antibiotics

that are often highlighted in public health documents as contributing to AMR problem in the UK.17

Table 8 summarises the result of this exercise. Note that in 2012, this group of molecules take up

17See for instance, https://www.nice.org.uk/advice/ktt9/chapter/Evidence-context and CMO (2013).
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Table 8. Tax on select broad-spectrum drugs

Percent Tax
5% 10% 20%

%∆ price Broadg 4.74 9.47 18.90
Broado 2.46 4.84 9.33
Narrow -0.05 -0.10 -0.20

%∆ quantity Broadg -9.83 -18.56 -33.34
Broado 1.39 2.57 4.44
Narrow 0.96 1.88 3.61

∆ profits Broadg -5.38 -10.08 -17.89
Broado 18.47 35.60 66.23
Narrow 2.29 4.50 8.62

∆ profits (all) 15.38 30.02 56.95
∆ consumer surplus -34.90 -67.33 -126.09
∆ tax tevenue 10.01 17.94 29.26
∆ testing cost -17.18 -33.77 -64.74

Total -26.69 -53.14 -104.61

Tax imposed on drugs in group broadg, which includes co-amoxiclav,
quinolones (ciprofloxacin, levofloxacin and ofloxacin) and cephalosporins
(cefalexin).

9.1% of the total market share by volume, while the remaining broad-spectrum drugs consist of

40.4% of market share. A 5% tax on this group reduces their demand by 9.83%, and that of other

broad- and narrow-spectrum drugs increases by 1.39% and 0.96% respectively, with negligible impact

on demand for the outside option (-0.03%). Switching is more significant when we increase the tax

rate to 20% when demand for these molecules reduces by 33.34% which could help substantially

with the AMR problem. In terms of the cost of this intervention, the loss in consumer surplus is

£34.9 and £126.1 per 1000 residents for the 5% and 20% tax rates respectively, which is far less

than that in the earlier exercise.18 Further, most of the tax burden is passed on to consumers (NHS

in this case) as the pass-on rate is more than 90% in all cases. Also, because many broad-spectrum

drugs are strategic complements, even the drugs with molecules on which tax is not imposed increase

their prices in equilibrium. Combined with a shift in demand for other broad-spectrum drugs, the

tax leads to an overall increase in firm profit for companies producing other broad-spectrum drugs

(implying that further consideration should be given to recovering windfall increase in profits due to

such a tax, or requiring that an increase in any firm profits be directed towards research activities

for AMR).

5. Conclusion

In this paper we studied the market structure of first and second-line antibiotics in the UK between

2003-2013. Using aggregate levels sales data, we estimated discrete choice demand models. We find

18For a rough comparison, the earlier exercise of increasing cost of broad-spectrum roughly translates to a 100% tax on all

broad-spectrum drugs.
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that while prices have declined over the last decade, marginal costs have declined even more, and

overall this sector’s profitability has increased over time. While generics have higher profit margins,

branded firms also earn positive profits. Similarly, marginal costs of broad-spectrum antibiotics are

lower while their profit margins are higher relative to the narrow-spectrum antibiotics.

Demand estimates reveal that there is a dispersion in tastes for antibiotics that varies by the

antibiotic spectrum of the drug (the marginal utility of spectrum). Price increases in one drug

do lead to significant substitution towards other cheaper drugs, but most of the substitution is

within groups by spectrum of the antibiotics. This implies that while switching from broad- to

narrow-spectrum is possible via changes in relative prices, it will have significant implications for

consumer surplus. When we increase the marginal cost of broad-spectrum drugs to match that of

narrow-spectrum drugs, which is roughly equivalent to a unit tax that doubles the cost, demand

switches significantly from broad- to narrow-spectrum with an associated consumer welfare loss

of £503.4 per 1000 residents. For an ad valorem tax of 20% on a select set of broad-spectrum

drugs, the cost in terms of consumer welfare is £126.1 per 1000 residents and a reduction demand

of 33% for co-amoxiclav, quinolones and cephalosporins but a small increase in demand of other

broad-spectrum drugs. While our simulations show how much demand is shifted from broad- to

narrow-spectrum, and at what cost, it does not calculate the long term benefits of switching to

drugs with lower AMR footprint. While the two tax regimes differer in how much demand will shift

and what it will cost in terms of consumer welfare, it is clear that these are much smaller than the

estimates of world wide costs in O’Neill (2016) and it may be well worth our effort to consider such

remedies to shift demand to narrow-spectrum drugs.

Finally, note that the consumers in our model (patient-physician combination) exhibit strong tastes

by the spectrum of a drug. In principle this could also be exploited to modify tastes is such a

way as to reduce consumption of broad-spectrum drugs. Currently, demand side interventions are

mainly educational campaigns, including raising awareness of antibiotics resistance to the public,

professional education to prescribers as well as stewardship of preferred prescription in primary

care and in hospitals (Davies and Gibbens, 2013, Scoggins et al., 2006). However, those campaigns

may not be sufficient. Since part of the preference over broad-spectrum antibiotics may stem from

fear of treatment failure, especially in primary care when there is no clear clue of the specific type

of bacterial pathogen, quick and cheap diagnosis test may completely solve the puzzle. Although

these tests are expensive, time consuming and rarely used in primary care now, scientists have

made huge progress to reduce the cost and time in diagnostic methods. For example, Schmidt et

al. (2017) have successfully reduced the time of testing to four hours by direct DNA sequencing. If

the uncertainty of bacteria type or level of susceptibility could be reduced by widely used accurate

diagnosis, the inappropriate consumption of antibiotics would be calibrated. That combined with

cost-side interventions that we highlight above would imply shifting to narrow-spectrum antibiotics

with much lower distortions and lower loss in consumer welfare.
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Mechoulan, Stéphane, “Market structure and communicable diseases,” Canadian Journal of
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ÖBIG, Surveying, assessing and analysing the pharmaceutical sector in the 25 EU member states,
ÖBIG, 2006. [Online; Accessed on 11/08/2015].

O’Neill, Jim, “Tackling drug-resistant infections globally: final report and recommendations,”
Wellcome Trust & HM Government, 2016.

Outterson, Kevin, Julie Balch Samora, and Karen Keller-Cuda, “Will longer antimicrobial
patents improve global public health?,” The Lancet Infectious Diseases, 2007, 7 (8), 559–566.

PHE, “English surveillance programme for antimicrobial utilisation and resistance (ESPAUR) 2010
to 2014, Report 2015,” Technical Report, Public Health England 2015.

, “Management of infection guidance for primary care for consultation and local adapta-
tion,” Technical Report, Public Health England 2015.

Phelps, Charles E, “Bug/drug resistance: sometimes less is more,” Medical Care, February 1989,
27 (2), 194–203.

Power, E, “Impact of antibiotic restrictions: the pharmaceutical perspective,” Clinical Microbiol-
ogy and Infection, 2006, 12 (s5), 25–34.

Projan, Steven J, “Why is big Pharma getting out of antibacterial drug discovery?,” Current
Opinion in Microbiology, 2003, 6 (5), 427–430.

Reynaert, Mathias and Frank Verboven, “Improving the performance of random coefficients
demand models: the role of optimal instruments,” Journal of Econometrics, 2014, 179 (1), 83–98.

Rudholm, Niklas, “Economic implications of antibiotic resistance in a global economy,” Journal
of Health Economics, 2002, 21 (6), 1071–1083.

Schmidt, K, S Mwaigwisya, LC Crossman, M Doumith, D Munroe, C Pires, AM Khan,
N Woodford, NJ Saunders, J Wain et al., “Identification of bacterial pathogens and an-
timicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing,”
Journal of Antimicrobial Chemotherapy, 2017, 72 (1), 104–114.

Scoggins, A, J Tiessen, T Ling, and L Rabinovich, “Prescribing in primary care, understand-
ing what shapes GPs’ prescribing choices and how might these be changed,” Technical Report,
RAND Corporation, Cambridge, UK 2006.

Small, Kenneth A and Harvey S Rosen, “Applied welfare economics with discrete choice
models,” Econometrica, 1981, 49 (1), 105–30.

29



Smith, Richard D and Joanna Coast, “Controlling antimicrobial resistance: a proposed trans-
ferable permit market,” Health policy, 1998, 43 (3), 219–232.

, Milton Yago, Michael Millar, and Jo Coast, “Assessing the macroeconomic impact
of a healthcare problem: the application of computable general equilibrium analysis to antimi-
crobial resistance,” Journal of Health Economics, 2005, 24 (6), 1055–1075.

, , , and Joanna Coast, “A macroeconomic approach to evaluating
policies to contain antimicrobial resistance,” Applied Health Economics and Health Policy, 2006,
5 (1), 55–65.

Spellberg, Brad, John H Powers, Eric P Brass, Loren G Miller, and John E Edwards,
“Trends in antimicrobial drug development: implications for the future,” Clinical Infectious Dis-
eases, 2004, 38 (9), 1279–1286.

Steinman, Michael A, C Seth Landefeld, and Ralph Gonzales, “Predictors of broad-
spectrum antibiotic prescribing for acute respiratory tract infections in adult primary care,”
JAMA, 2003, 289 (6), 719–725.

, Ralph Gonzales, Jeffrey A Linder, and C Seth Landefeld, “Changing use of
antibiotics in community-based outpatient practice, 1991-1999,” Annals of Internal Medicine,
2003, 138 (7), 525–533.

Suda, Katie J, Lauri A Hicks, Rebecca M Roberts, Robert J Hunkler, and Thomas H
Taylor, “Trends and seasonal variation in outpatient antibiotic prescription rates in the United
States, 2006 to 2010,” Antimicrobial Agents and Chemotherapy, 2014, 58 (5), 2763–2766.

Tacconelli, Evelina, Giulia De Angelis, Maria A Cataldo, Emanuela Pozzi, and Roberto
Cauda, “Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus
(MRSA) isolation? A systematic review and meta-analysis,” Journal of Antimicrobial Chemother-
apy, 2008, 61 (1), 26–38.

Tanouye, Elyse, “Price markups on generics can top brand-name drugs,” The Wall Street Journal,
December 1998, (31).

Tisdell, Clem, “Exploitation of techniques that decline in effectiveness with use,” Public Finance,
1982, 37 (3), 428–437.

Towse, A, “Developing the idea of transferable intellectual property rights (TIPP) to incentivise
R&D in drugs and vaccines for neglected diseases,” Technical Report, OHE Consulting, London
2004.

Towse, Adrian and Hannah Kettler, “A review of IP and non-IP incentives for R&D for
diseases of poverty. What type of innovation is required and how can we incentivise the private
sector to deliver it?,” Innovation and Public Health, 2005.

Wasley, Andrew and Victoria Parsons, “Exclusive: Minister floats tax on antibiotics to tackle
drug resistance crisis,” The Bureau of Investigative Journalism, 2016.

WHO, “WHO global strategy for containment of antimicrobial resistance,” Technical Report,
World Health Organization, Geneva 2001.

Wood, Fiona, Sharon Simpson, and Christopher C Butler, “Socially responsible antibiotic
choices in primary care: a qualitative study of GPs’ decisions to prescribe broad-spectrum and
fluroquinolone antibiotics,” Family Practice, 2007, 24 (5), 427–434.

Yip, Winnie, Timothy Powell-Jackson, Wen Chen, Min Hu, Eduardo Fe, Mu Hu,
Weiyan Jian, Ming Lu, Wei Han, and William C Hsiao, “Capitation combined with pay-
for-performance improves antibiotic prescribing practices in rural China,” Health Affairs, 2014,
33 (3), 502–510.

30



Appendix A.

A-1. Spectrum. In our estimations we use antibacterial spectrum of activity score of a drug as a
characteristic which varies by molecule. This allows us to estimate preference over spectrum scores.
Spectrum of activity score for select molecules is listed in the second column in Table 1 and the score
itself is taken from Madaras-Kelly et al. (2014, 2015) and related sources (if a specific molecule is not
listed in their paper, we match it the molecule’s family and indications). Briefly, they calculated
the spectrum score for each antibiotic as follows: For each organism-antibiotic domain pair, an
ordinal scale, between 0 (susceptibility < 20%) and 4 (susceptibility > 80%) was given to score the
antibiotic susceptibility. The spectrum score associated with an antibiotic is then the sum of scores
of all organism-antibiotic domain pairs for that antibiotic. In their metric, 60 is the theoretical
maximum score and zero is the minimum, where the larger the score the broader is the spectrum.
In our data, the values range from 4.25 (penicillin) to 39.75 (fluoroquinolones). It is important to
note that for a given molecule, its spectrum score is potentially varying across different regions and
over time. Importantly, it is decreasing with antibiotic resistance, and thus can be thought of as a
potential indicator of antibiotic resistance levels. Due to limited availability of the scores, we only
use the static value provided in Madaras-Kelly et al. (2014). Finally, our classification for narrow-
and broad-spectrum drug is as given by EARS (2015), which is roughly equivalent to score value of
amoxicillin or higher as broad-spectrum and narrow-spectrum otherwise.

A-2. Share weighted elasticities. In this appendix, we describe how to calculate share weighted
own- and cross-price elasticities. We take one market for example, and in the data we have 120
such markets. To sum up over 120 markets, we use the DDD-adjusted quantity as weight.

For the random coefficients logit model, the formula for computing elasticity of product j with
respect to price change of product k in market t is given by

ηjkt =
∂sjt/sjt
∂pkt/pkt

=

{
−pjt
sjt

1
ns

∑ns
i=1 αisijt(1− sijt) if j = k

pkt
sjt

1
ns

∑ns
i=1 αisijtsikt if j 6= k

where αi is individual taste on price and

sijt =
exp(δjt + µijt)

exp(δ0t) +
∑Jt

l=1 exp(δlt + µijt)

which is the purchasing probability of drug j by individual i in market t. In our case, the elasticity
matrix for each market (120 such markets) is 131× 130 and is first computed individually for each
market. This appendix briefly explains how we applied weights to compute share weighted averages
across J = 131 drugs and then over t = 120 markets.

For illustration, consider a single market and suppose there are only four drugs and the the outside
option so that 1 ≡ s0+s1+s2+s3+s4, and where first two are classified as broad-spectrum and next
two as narrow-spectrum. Then the average own elasticity in this market is just ηo =

∑4
j=1wjηjj

where wj = sj/
∑4

j=1 sj. We can take a similarly weighted average across the T markets to compute
the overall mean own-elasticity.

Next, to compute the mean cross-price elasticity, for each drug j first compute ηj as a weighted
average across all other k drugs, so η1 = s2η12+s3η13+s4η14

s2+s3+s4
which gives us mean price elasticity of drug

j with respect to price changes in all other drugs, and then compute weighted average responsiveness
of all drugs as ηc = s1w1+s2w2+s3w3+s4w4

s1+s2+s3+s4
.

31



Table 9. ηjk : %∆sj/%∆pk

Price-Share B N
J1 J2 J3 J4

B J1 η11 η12 η13 η14
J2 η21 η22 η23 η24

N J3 η31 η32 η33 η34
J4 η41 η42 η43 η44

The shares in the formulas above can be adjusted to compute weighted averages within or between
spectrum groups. For instance, within broad-spectrum, mean cross-elasticity is

ηcbb =
s1η1b + s2η2b
s1 + s2

where η1b = s2η12/s2 = η12 and, η2b = s1η21/s1 = η21. Similarly, if want to compute the mean
share elasticity of broad-spectrum drugs with respect to a price change of narrow-spectrum drugs,
we would compute it as

ηcbn =
s1η1n + s2η2n

s1 + s2
.

where η1n = s3η13+s4η14
s3+s4

and η2n = s3η23+s4η24
s3+s4

.

A-3. Wholesale price of generics. We obtained the additional dataset wholesale price of gener-
ics from Dispex.net.19 This dataset is collected by surveying wholesalers’ willingness to sell for
unbranded generic medicines. The data reveals that the average percentage price difference be-
tween the NHS reimbursement price and the market price is about 44%, with a mode of 53%.
Similar discount rates are also found in Kanavos (2007). Unfortunately, due to rebates and un-
observed discounts along the supply chain, this data does not record prices with 100% precision.
Moreover, as this data set is collected only in quarters (January, April, July and October), we have
to expand this data to make it compatible with our original monthly data. We do that by filling
out missing observations with the nearest available data points. We also match unbranded drugs
to be comparable to branded ones (by molecule and form) and assume that the wholesale prices
in this dataset are correlated with the prices of branded drugs.20 We use this data to generate an
additional instrument to correct for the price endogeneity in the demand-side regression.

19http://www.dispex.net/
20Since we only deal with commonly prescribed antibiotics, whose patent has expired long before our study period, we do

not have patent or market exclusivity issues in this data.
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